

# higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

# NATIONAL CERTIFICATE

# **ENGINEERING SCIENCE N3**

(15070413)

2 April 2020 (X-paper) 09:00–12:00

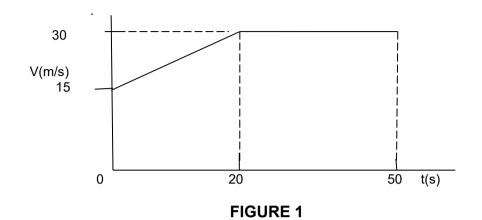
**REQUIREMENTS:** Properties of water and steam (BOE 173)

Calculators may be used

This question paper consists of 7 pages, a formula sheet of 2 pages and an information sheet of 2 pages.



# DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA


# NATIONAL CERTIFICATE ENGINEERING SCIENCE N3 TIME: 3 HOURS MARKS: 100

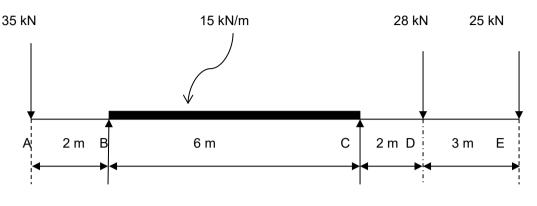
## INSTRUCTIONS AND INFORMATION

- 1. Answer all the questions.
- 2. Read all the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Keep subsections of questions together.
- 5. Rule off on completion of each question.
- 6. Answers must be rounded off to THREE decimals.
- 7. All calculations should consist of at least the following THREE steps:
  - Formula used or manipulation thereof
  - Substitution of given data in formula
  - Answer with correct SI unit
- 8. Drawing instruments must be used for all drawings. All drawings and diagrams must be fully labelled.
- 9. Use the constant values on the attached information sheet where applicable.
- 10. Use  $g = 9.8 \text{ m/s}^2$ .
- <sup>11.</sup> Write neatly and legibly.

# **QUESTION 1: MOTION, ENERGY AND POWER**

- 1.1 Define acceleration.
- ڈ 1.2 The diagram in FIGURE 1 represents the motion of a train.



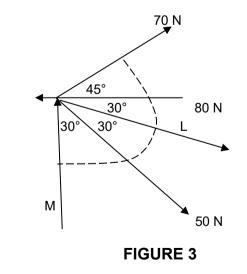

Determine each of the following:

|     | 1.2.1                | Acceleration of the train during the first 20 seconds                                                                                                                            | (2)                |
|-----|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|     | 1.2.2                | Total distance the train has travelled after 50 seconds                                                                                                                          | (3)                |
| 1.3 | A force<br>through ? | of 250 N is exerted on a 20 cm long spanner to turn a nut<br>120°.                                                                                                               |                    |
|     | Calculate            | e each of the following:                                                                                                                                                         |                    |
|     | 1.3.1                | Angle in radians                                                                                                                                                                 | (1)                |
|     | 1.3.2                | Torque 🦞                                                                                                                                                                         | (2)                |
|     | 1.3.3                | Work done                                                                                                                                                                        | (2)                |
| 1.4 | of 18,7 m            | t fits around a pulley with a diameter of 38 cm. The belt has a speed<br>n/s and transmits 5 N per mm belt width. The effective pull in the belt<br>and the belt width is 21 cm. |                    |
|     | Calculate            | e each of the following:                                                                                                                                                         |                    |
|     | 1.4.1                | Power transmitted by the belt in kW                                                                                                                                              | (2)                |
|     | 1.4.2                | Tight-side force in the belt                                                                                                                                                     | (1)                |
|     | 1.4.3                | Pulley speed in r/s                                                                                                                                                              | (2)<br><b>[16]</b> |

(1)

## **QUESTION 2: MOMENTS**

- 2.1 Define *torque*. Ŵ
- 2.2 FIGURE 2 shows a simply supported loaded beam.




#### **FIGURE 2**

- 2.2.1 Calculate the magnitude of the reactions of supports B and C. (4)
- 2.2.2 Draw a shear-force diagram of the beam to suitable scale and indicate all the main values on the diagram. (6) Ŷ

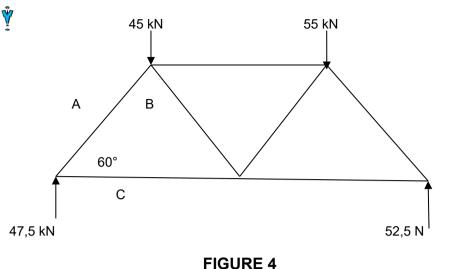
#### **QUESTION 3: FORCES**

- 3.1 Define parallelogram of forces.
- Determine the magnitude of the unknown forces shown in the system of 3.2 forces in FIGURE 3.



(6)

(2)


(2)

[12]

(2)

Name TWO conditions for static equilibrium if the forces acting on the 3.3 framework or object are in equilibrium.

3.4 FIGURE 4 below shows a structure. Determine the magnitude and nature of the forces in members AB and BC.



(4) [**14**]

[12]

# **QUESTION 4: FRICTION**

| 4.1 | State THREE principles of kinetic friction.                                                                                                     | (3) |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.2 | A casting with a mass of 0,2 tons rests on a sloping surface forming an angle of 25° with the horizontal. The co-efficient of friction is 0,36. |     |

Calculate each of the following

| 4.2.1 | Component of the weight of the object perpendicular to the surface | (2) |
|-------|--------------------------------------------------------------------|-----|
| 4.2.2 | Component of the weight of the object parallel to the surface      | (2) |
| 4.2.3 | Friction force between the <i>casting</i> and the <i>incline</i>   | (3) |
| 4.2.4 | Smallest force required to move the casting down the incline       | (2) |

#### **QUESTION 5: HEAT**

5.1 Name THREE factors on which the increase in length depends if a metal rod is heated uniformly along its length. (3)
5.2 An aluminium strip with a length of 200 cm and a width of 10 cm is heated from 17 °C to 107 °C. Calculate each of the following:

| 5.2.1 | Change in temperature of the aluminium strip            | (1) |
|-------|---------------------------------------------------------|-----|
| 5.2.2 | Change in length in mm of the aluminium strip           | (3) |
| 5.2.3 | Change in area of the aluminium strip in m <sup>2</sup> | (3) |

| 5.3 | Describe the effect of the change in pressure on the saturation temperature of a substance.                                        | (1)         |
|-----|------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 5.4 | Calculate the total enthalpy in MJ required to produce 2 kg of wet steam with a dryness fraction of 0,9 at a pressure of 1450 kPa. | (4)<br>[15] |

#### **QUESTION 6: HYDRAULICS**

- 6.1 Write an equation of delivery head in terms of suction head and static head. (2)
- 6.2 The following data refers to a single-stroke pump driven by a diesel engine, which has to deliver water to a reservoir above the pump.

| Working pressure                  | = | 0,45 MPa |
|-----------------------------------|---|----------|
| Volume of water delivered         | = | 45 m³/h  |
| Output power of the diesel engine | = | 7350 W   |

Calculate each of the following:

| 6.2.4 | Efficiency of the pump                         | (2)<br>[12] |
|-------|------------------------------------------------|-------------|
| 6.2.3 | Output power of the pump                       | (1)         |
| 6.2.2 | Work done by the pump per second               | (4)         |
| 6.2.1 | Maximum height of the reservoir above the pump | (3)         |

## **QUESTION 7: ELECTRICITY**

- 7.1 Explain *potential difference* of a cell. (1)
- 7.2 A battery has an internal resistance of 0,2  $\Omega$  and is connected in series with a 5  $\Omega$  resistor and an unknown resistor. When the circuit is closed, the potential difference across the 5  $\Omega$  resistor is 12,6 V and that across the unknown resistor is 11,4 V.

Calculate each of the following:

- 7.2.1 Current through the 5  $\Omega$  resistor
- 7.2.2 <sup>Y</sup> Resistance of the unknown resistor

(2 × 2) (4)

7.3 A current of 10 A flows through a silver nitrate solution for one hour to electroplate an object. The electrochemical equivalent for silver is 0,001118 g/C.

Calculate each of the following:

- 7.3.1 Amount of electric charge required
- 7.3.2 Mass of silver deposited  $\checkmark$

- (2 × 2) (4)
- 7.4 A single-phase transformer has a supply voltage of 230 V and a primary current of 6 A at full load. The secondary current is 0,4 A and there are 600 turns on the primary coil.

Calculate each of the following:

- 7.4.1 Turns ratio 🦞
- 7.4.2 Number of turns in the secondary

(2 × 2) (4) **[13]** 

#### **QUESTION 8: CHEMISTRY**

|     | TOTAL:                                                                          | 100               |
|-----|---------------------------------------------------------------------------------|-------------------|
| 8.4 | Give the chemical formulae for limestone and hydrochloric acid.                 | (2)<br><b>[6]</b> |
| 8.3 | Name ONE property of brass.                                                     | (1)               |
| 8.2 | Name the TWO main groups into which elements in the periodic table are divided. | (2)               |
| 8.1 | Give the number of valence electrons for alkali earth metals.                   | (1)               |

#### **ENGINEERING SCIENCE N3**

#### FORMULA SHEET

All the formulae needed are not necessarily included. Any applicable formula may also be used.

$$\begin{split} W = F.s & m_{1}.u_{1}\pm m_{2}.u_{2}=m_{1}.v_{1}\pm m_{2}.v_{2} \\ W = \rho.V & D_{e} = (D + t) \\ P = \frac{W}{t} & h_{nat/vet} = h_{f} + xh_{fg} \\ \eta = \frac{Uitset/Output}{Inset/Input} 100\% & P = 2.\pi.T.n...T = F.r \\ \eta = \frac{F_{\mu}}{N_{R}} & P = 2.\pi.T.n...T = F.r \\ \mu = \frac{F_{\mu}}{N_{R}} & V_{RAM} = V_{PL} \times n \\ \mu = \tan \Phi & F_{X} = F_{COS}\theta \\ N_{R} = F_{C} \pm F_{T}sina ... a = 0 & F_{Y} = Fsin\theta \\ F_{S} = wsin\theta & \Sigma F_{X} = F_{COS}\theta_{1} + ... + F_{n}cos\theta_{n} \\ F_{C} = wcos\theta & \Sigma F_{Y} = F_{I}sin\theta_{1} + ... + F_{n}sin\theta_{n} \\ F_{T}cosa = F_{\mu} \pm F_{S} ... a = 0 & R = \sqrt{\Sigma F_{X}^{2} \pm \Sigma F_{Y}^{2}} \\ F_{e} = T_{1} - T_{2} & tan\varphi = \frac{\Sigma F_{Y}}{\Sigma F_{X}} \\ T_{\frac{1}{2}} = tension ratio & Q = m.c . At ... t_{F} = to \pm \Delta t \\ P = F_{e} .v & m.ww = Q = m.hv \\ v = \pi . d . n ... n = \frac{N}{60} & P = \frac{Q}{t} \\ W_{\mu} = F_{\mu} .s & AL = Lo .a . At ... t_{f} = Lo \pm \Delta L \\ AE_{F} = m.g .Ah & AA = A_{0} . \beta . At ... A_{f} = A_{0} \pm \Delta A \\ AE_{K} = \frac{1}{2} .m.Av^{2} & 2.a .s = v^{2} - u^{2} \\ Q = I^{2} . R .t & v = u + a.t \\ \frac{V_{P}}{V_{S}} = \frac{N_{P}}{V_{S}} = \frac{I_{S}}{I_{P}} & \Sigma F_{X} \\ \end{array}$$

Copyright reserved

$$\Sigma \ CWM = \Sigma A CWM$$

$$P_{ABS} = P_{ATM} + P_{MET}$$

$$P = \delta \times g \times h$$

$$\frac{1}{R_{PAR}} = \frac{1}{R_1} + \dots + \frac{1}{R_n}$$

$$R_{SER} = R_1 + \dots R_n$$

$$V_1 - V_2 = -e(U_1 - U_2)$$

$$V = I \times R$$

## **ENGINEERING SCIENCE N3**

# **INFORMATION SHEET**

# **Physical constants**

| QUANTITY                                  | CONSTANTS<br>KONSTANTE    | HOEVEELHEID                              |
|-------------------------------------------|---------------------------|------------------------------------------|
| Atmospheric pressure                      | 101,3 kPa                 | Atmosferiese druk                        |
| Density of copper                         | 8 900 kg/m <sup>3</sup>   | Digtheid van koper                       |
| Density of aluminium                      | 2 770 kg/m <sup>3</sup>   | Digtheid van aluminium                   |
| Density of gold                           | 19 000 kg/m <sup>3</sup>  | Digtheid van goud                        |
| Density of alcohol (ethyl)                | 790 kg/m <sup>3</sup>     | Digtheid van alkohol (etiel)             |
| Density of mercury                        | 13 600 kg/m <sup>3</sup>  | Digtheid van kwik                        |
| Density of platinum                       | 21 500 kg/m <sup>3</sup>  | Digtheid van platina                     |
| Density of water                          | 1 000 kg/m <sup>3</sup>   | Digtheid van water                       |
| Density of mineral oil                    | 920 kg/m <sup>3</sup>     | Digtheid van minerale olie               |
| Density of air                            | 1,05 kg/m <sup>3</sup>    | Digtheid van lug                         |
| Electrochemical equivalent of silver      | 1,118 mg/C                | Elektrocherniese ekwivalent van silwer   |
| Electrochemical equivalent of copper      | 0,329 mg/C                | Elektrochemiese ekwivalent van koper     |
| Gravitational acceleration                | 9,8 m/s <sup>2</sup>      | Swaartekragversnelling                   |
| Heat value of coal                        | 30 MJ/kg                  | Warmtewaarde van steenkool               |
| Heat value of anthracite                  | 35 MJ/kg                  | Warmtewaarde van antrasiet               |
| Heat value of petrol                      | 45 MJ/kg                  | Warmtewaarde van petrol                  |
| Heat value of hydrogen                    | 140 MJ/kg                 | Warmtewaarde van waterstof               |
| Linear coefficient of expansion of copper | 17 × 10 <sup>-6</sup> /°C | Lineêre uitsettingskoëffisiënt van koper |

| Linear coefficient of expansion of aluminium | 23 × 10 <sup>-6</sup> /°C     | Lineêre uitsettingskoëffisiënt van aluminium |
|----------------------------------------------|-------------------------------|----------------------------------------------|
| Linear coefficient of expansion of steel     | $12 \times 10^{-6}/^{\circ}C$ | Lineêre uitsettingskoëffisiënt van staal     |
| Linear coefficient of expansion of lead      | 54 × 10 <sup>-6</sup> /°C     | Lineêre uitsettingskoëffisiënt van lood      |
| Specific heat capacity of steam              | 2 100 J/kg.°C                 | Spesifieke warmtekapasiteit van stoom        |
| Specific heat capacity of water              | 4 187 J/kg.°C                 | Spesifieke warmtekapasiteit van water        |
| Specific heat capacity of aluminium          | 900 J/kg.°C                   | Spesifieke warmtekapasiteit van aluminium    |
| Specific heat capacity of oil                | 2 000 J/kg.°C                 | Spesifieke warmtekapasiteit van olie         |
| Specific heat capacity of steel              | 500 J/kg.°C                   | Spesifieke warmtekapasiteit van staal        |
| Specific heat capacity of copper             | 390 J/kg.°C                   | Spesifieke warmtekapasiteit van koper        |